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Abstract

Text-to-image models are historically bad at generating text within images (e.g.,
a slogan on a t-shirt), but recent state-of-the-art models like FLUX.1 have shown
significant improvements in legible text generation. Does this mean that FLUX has
learned abstract representations of the letters it is generating? We investigate the
implicit representations of inpainting diffusion models by printing characters onto
an evenly spaced grid and prompting the model to fill in masked characters. By
probing the latent representations of these character grids in various components
of the model, we find evidence of generalizable letter representations in middle
transformer layers that suggest a notion of letter identity consistent across fonts.

1 Introduction

The ability to distinguish a letter from its rendered form and extrapolate it across different contexts
is considered a hallmark of human cognition: in 1995, Hofstadter went as far as to argue that the
question “What is the letter ‘a’?” may be “the central problem of AI” [5, 8]. In this work, we
investigate how FLUX.1 [6] writes text.

Previous image generative models were notoriously bad at rendering text, but the latest generation of
text-to-image diffusion models, such as FLUX.1 and Qwen-Image [9], are considerably better at this
task. While these models consistently render legible characters, they can only generate coherent text
when the prompt contains explicit instructions of what to write. Without explicit instructions, text
generated by FLUX.1 qualitatively mimics the visual aspects of language without legible content,
interspersing English words with gibberish made from legible characters (see Figure 1 for examples).

Does this grasp on generating legible characters indicate that FLUX.1 has developed symbolic,
reusable representations of letters? In this work, we find preliminary evidence that FLUX.1 has an
abstract notion of letters beyond their rendered form. We do this by designing visual prompts that
require an understanding of characters independent of their rendered style to complete, evaluating
whether the FLUX.1-Fill inpainting model is able to complete these patterns. We then probe the
latent representations of these character grids in various components of the model and find evidence
of general letter representations in middle transformer layers.

2 Character Inpainting

We use image inpainting [2, 7] to investigate an image generative model’s understanding of letters
independent of their rendered form. Similar to previous work in visual prompting [1], we repeat
words on an image grid and mask out characters which represent either a variation in font or casing.
The “Repeat Word” setting repeats the same word across the whole image, varying a single line. The
“Word Pairs” setting prints pairs of words, each containing a varied and unvaried example. Figure 2

Preprint.



Figure 1: Examples of images generated by FLUX.1-Dev when not given specific text to generate.
Left to right: “part of a newspaper clipping, short, legible, in English”, “writing a long message on
a blackboard in English”, “a message written in sharpie on a sticky note in English”. Qualitatively,
letters are remarkably well-formed, with some English words mixed in with nonsensical text.
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Figure 2: We use image inpainting to investigate an image generative model’s understanding of
letters independent of their rendered form. We repeat words on an image grid and mask out characters
which represent either a variation in font or casing. The "Repeat Word" setting repeats the same word
across the whole image and varies a single line. The "Word Pairs" setting prints pairs of words, each
containing a varied and unvaried example.
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Table 1: We report FLUX.1-Fill’s accuracy inpainting the correct character, casing, and font across
all settings. For capitalization, ‘Character %’ indicates the percent of inpainted letters that are the
correct character and the correct case, whereas ‘Casing %’ indicates the percentage of inpaints that are
the correct case. For the font task, ‘Character %’ is only calculated based on character, not font. Fonts
are classified using a custom-trained model that may not generalize to noisy FLUX.1-Fill outputs;
see Appendix B for 120 randomly-selected inpainting generations, which are more representative of
the model’s consistency for this task.

Word Gibberish

Character % Casing % Font % Character % Casing % Font %

Capitalization (Repeat Word) 39.6 56.9 _ 23.9 51.7 _
Capitalization (Word Pairs) 16.4 67.6 _ 2.0 64.4 _
Font (Repeat Word) 12.1 _ 19.8 17.2 _ 26.4
Font (Word Pairs) 6.5 _ 29.2 3.53 _ 30.0
Random Baseline 2.0 50.0 25.0 2.0 50.0 25.0

shows examples of these visual prompts, their target characters, and samples from the inpainting
model.

We use the FLUX.1-Fill model [6] with an empty prompt and 0 guidance scale to ensure unconditional
generation. When the mask used to guide inpainting is too large or small, the model is prone to
generating visual content other than characters. To minimize this effect, we measure accuracy of
copying characters as grid size varies, and use the grid size with the highest reported accuracy (see
Figure 15). At this grid size around 30% of the inpainted patches are unrecognizable, introducing
noise to the recognition accuracy.

The character and font of the inpainted patch are identified with PP-OCRv-5 [3] and a Resnet34
model [4] trained to recognize fonts, respectively. PP-OCRv-5 reports a 86.79% recognition accuracy
on printed english and our font classifier achieves a 100% test accuracy on held out characters. The
OCR model only sees the character patch, so recognition results for letters whose form does not
change with casing (e.g. ’o’ or ’z’) may be noisy.

For each setting we draw 30 samples each for 50 different images. We evaluate both words and random
strings across the four setups, and four different fonts are used for rendering text. Table 1 reports the
accuracy of inpainting the correct character, casing, and font across all settings. As classifying model
generations is somewhat noisy, Appendix B shows 120 randomly-selected inpainting generations
which are more representative of the model’s consistency for this task.

Overall, character accuracy is quite high relative to a random baseline, but capitalization and font
transfer are more noisy. Printing random strings instead of words decreases character accuracy across
most settings—perhaps because the model does not recognize any semantic textual content in such
cases, and so focuses instead on matching the visual pattern of the image prompt. For word pairs,
models are more likely to inpaint uppercase letters or match the desired font, but these outputs are
less likely to be the correct character.

3 Probing for Symbolic Representations

FLUX.1-Fill’s ability to inpaint the correct character in Section 2 is promising. It is unclear, however,
whether or not this is because the model has learned a general representation of letters, or because the
model has memorized common fonts. To elucidate this distinction, we train linear probes on VAE
latents as well as internal transformer representations of letter patches. We include the VAE in our
analysis to understand what symbolic representations it already encodes (if any), and what symbolic
representations the transformer must learn.

We train three kinds of linear probes: a character classifier tested on unseen fonts, a font classifier
tested on unseen letters, and a capitalization classifier tested on unseen fonts. We take all the patches
corresponding to a given letter in the prompt image and concatenate them to obtain a single vector for
that character; transformer hidden states are taken from the first denoising timestep. Note that exclude
the masked portion of the image, focusing only on parts of the image that are already fully-formed.
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Figure 3: We train three types of linear probe: A character classifier tested on unseen fonts, a font
classifier tested on unseen letters, and a capitalization classifier tested on unseen fonts. Font and
casing probes already achieve high test accuracy on VAE latents, but test accuracy becomes perfect
when trained on intermediate transformer activations. Strikingly, character probes can only generalize
to unseen fonts in transformer middle layers, indicating the existence of a general letter representation
only at those layers.
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Figure 4: We find that k-means clusters in the VAE latent space tend to group letters by stylistic
factors such as font and casing. However, k-means clustering on transformer representations from
layer 31 (the middle of the model) returns clusters that are largely uninterpretable. Each color
represents a cluster, with k = 25.

Figure 3 shows the training and test accuracies for these probes. Font and casing probes already
achieve high accuracy on VAE latents, so it is unsurprising that the probes trained on transformer
representations would also generalize, but test accuracy does reach 95%. Character probes, however,
only generalize to unseen fonts in transformer middle layers, indicating the existence of a general
letter representation that emerges only at those layers.

Finally, we perform k-means clustering on these representations, hoping to see whether character clus-
ters emerge in middle transformer layers. While VAE k-means clusters tend to group around stylistic
factors such as font and casing, transformer clusters are largely uninterpretable. Representative
samples of these clusters as well as their PCA projection are shown in Figure 4.

4 Conclusion

These experiments provide an initial look into the implicit language priors learned by diffusion
models, and help us understand what image models may be able to learn about text.
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A Variation in Character Cell Size
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Figure 5: When the mask used to guide in painting is too large or small, the model is prone to
generating visual content other than characters. In order to minimize this effect we look at accuracy
of copying a character as grid size varies and use the grid size with the highest reported accuracy.

B Inpainting Examples
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Figure 6: More examples of inpainting.
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Figure 7: More examples of inpainting.
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Figure 8: More examples of inpainting.
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Figure 9: More examples of inpainting.
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Figure 10: More examples of inpainting.
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Figure 11: More examples of inpainting.
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Figure 12: More examples of inpainting.
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Figure 13: More examples of inpainting.
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Figure 14: More examples of inpainting.
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Figure 15: More examples of inpainting.
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